Use of lytic bacteriophage for Actinomyces viscosus T14V as a probe for cell surface components mediating intergeneric coaggregation.
نویسندگان
چکیده
A lytic bacteriophage for Actinomyces viscosus T14V (the reference strain for actinomyces coaggregation group A) was isolated from raw sewage. This phage, designated BF307, also lysed the T14V-derived nonfimbriated mutant PK455-2 as well as A. viscosus MG-1 and T14AV but not the other serotype 2 or serotype 1 strains of this species that were tested or any of nine Actinomyces naeslundii isolates. Phages BF307 belonged to Bradley morphological group C and was similar in appearance to the A. viscosus MG-1 phages Av-1 and Av-3, which do not productively infect A. viscosus T14V. A. viscosus MG-1 mutants selected for resistance to phage BF307, Av-3, or CT7 (a human dental plaque isolate with the same host range as BF307) were coresistant to the other two phages but sensitive to Av-1. These results indicate that the receptors on A. viscosus MG-1 for phages BF307, Av-3, and CT7 are identical or share a common precursor and that the receptor for phage Av-1 is distinct. Comparison of the genomes of BF307, Av-3, and CT7 revealed that their DNAs were similar in size but distinguishable by restriction analysis. Two altered coaggregation phenotypes were identified among the phage BF307-resistant mutants of strains MG-1, T14V, T14AV, and PK455-2. Class I mutants had lost the ability to interact with coaggregation group 1 streptococci, and class II mutants did not coaggregate with either group 1 or group 2 streptococci. These results are consistent with the proposal that the phage BF307 receptor on these A. viscosus strains is related to one of the structures that mediates coaggregation with oral streptococci. A model to delineate the various coaggregation mediators on the surface of actinomyces coaggregation group A cells is presented, and the use of these phages to probe surface components of human oral actinomyces strains is discussed.
منابع مشابه
A factor from Actinomyces viscosus T14V that specifically aggregates Streptococcus sanguis H1.
A highly specific aggregation factor for Streptococcus sanguis H1 (AFH1) was obtained by lysozyme treatment of Actinomyces viscosus T14V. At 1 micrograms/ml, AFH1 aggregated a suspension of S. sanguis H1, with which A. viscosus T14V coaggregates by a mechanism not inhibited by lactose: even at much higher levels AFH1 caused little or no aggregation of streptococci from other coaggregation group...
متن کاملIsolation of Actinomyces bacteriophage from human dental plaque.
Human dental plaque samples were screened for the presence of bacteriophage for Actinomyces viscosus and Streptococcus sanguis. None of the 336 samples yielded phage for S. sanguis, but 10 contained virulent actinomyces phage. A high host cell specificity was observed in that one phage isolate infected only A. viscosus T14V, eight phage isolates infected only A. viscosus MG-1, and one infected ...
متن کاملSurface fibrils (fimbriae) of Actinomyces viscosus T14V.
Surface antigens of Actinomyces viscosus T14V were released from cell walls by digestion with lysozyme. These were separated by ion-exchange and gel filtration chromatography into fractions rich in carbohydrate or protein. The former contained a polysaccharide high in 6-deoxytalose, along with a peptide fragment from the cell wall. In the protein-rich fractions, material of high molecular weigh...
متن کاملCoaggregation of oral Bacteroides species with other bacteria: central role in coaggregation bridges and competitions.
Seventy-three freshly isolated oral strains representing 10 Bacteroides spp. were tested for their ability to coaggregate with other oral gram-negative and gram-positive bacteria. None coaggregated with any of the gram-negative strains tested, which included Capnocytophaga gingivalis, C. ochracea, C. sputigena, and Actinobacillus actinomycetemcomitans. Strains of Bacteroides buccae, B. melanino...
متن کاملCoaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque.
Streptococci and actinomyces that initiate colonization of the tooth surface frequently coaggregate with each other as well as with other oral bacteria. These observations have led to the hypothesis that interbacterial adhesion influences spatiotemporal development of plaque. To assess the role of such interactions in oral biofilm formation in vivo, antibodies directed against bacterial surface...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 56 1 شماره
صفحات -
تاریخ انتشار 1988